

1

SBP
—

2

Rf.10
—

1

3

4

Route 10 Sewer Pump Station

1. Replace pumps, bases, rails and ancillary plumbing.

\$145,000

2. Replace level controlling device with transducer.

\$40,000

3. Remove all obsolete infrastructure from wet well. Seal any cracks or penetrations with hydraulic cement or epoxy injection.

\$15,000

4. Exterior concrete coatings can be considered (can be accomplished with internal staff).

\$15,000

5. Replace isolation valves and check valves in valve vault.

\$100,000

6. Install bypass valve connection in existing valve vault. This will include cutting into the existing discharge piping after the isolation gates and check valves, adding a tee, plug valve, and pipe connection with bleed off. Details and specs can be provided.

\$10,000

7. Replace hatch for valve vault with weather tight application. (This can be an alternate on the bid if not desired but from memory I believe the hatch is steel, not weather tight, and showing signs of deterioration?)

\$5,000

8. Rust inhibiting and protective coatings can be considered for all piping and valves in valve vault (can be accomplished with internal staff).

\$5,000

9. Install 10'x4' precast concrete building on appropriate base. Details and specs can be provided.

\$80,000

10. Replace and install new pump and motor control systems. All pump station control and electrical equipment to be installed on the inside of the building. Electrical meters, automatic and manual transfer switches are to be installed on the outside of the building.

\$150,000

11. Install SCADA system using LTE radios as a means of communications. There will be annual licensing fees for this service moving forward.

\$95,000

12. Repair or replace exterior fencing.

\$2,000

For this site, Flygt offers a complete package for pumps, bases, rails, level and pump controlling systems. It is very user friendly and simplifies the operation of the pump station and can be interfaced with a SCADA system. Stainless steel panels mounted on I-beams to house electrical and control components can be considered versus a prefabricated building; this may present significant cost savings.

Total Estimate,

\$662,000 plus 20% for engineering, plus 10% contingency. **\$873,840**

Route 189 Sewer Pump Station

1. Replace ventilation system inside can structure.

\$2,000

2. Purchase spare pump and motor to have in stock. I can provide vendors who can facilitate this request.

\$20,000

3. Scrape and apply coatings to exterior of all existing structures (can be accomplished with internal staff).

\$10,000

4. Install SCADA system using LTE radios as a means of communications. There will be annual licensing fees for this service moving forward.

\$75,000

5. Install 10'x4' precast concrete building on appropriate base. Details and specs can be provided. May need to be located off the states ROW or we could request a variance. Knowing that there is skid rail there they may work with us on the location.

\$80,000

6. Replace and install new pump and motor control systems. All pump station control and electrical equipment to be installed on the inside of the building. Electrical meters, automatic and manual transfer switches are to be installed on the outside of the building.

\$150,000

\$337,000 plus 20% for engineering, plus 10% contingency. **\$444,840** For this site, having a spare pump and motor in stock, ventilation system replaced, as well as SCADA feedback seem to be the most "urgent" needs; everything else can be costed and planned? Lets discuss the pipe separation that occurred previously. If I understand correctly, this was on the force main leaving the pump station which is asbestos concrete pipe. Replacing the force main would be very costly based on its size and length. As far as the can structure lighting – what were you referencing? Stainless steel panels mounted on I-beams to **house electrical and control components can be considered versus a prefabricated building**; this may present significant cost savings and be easier to achieve based on the site location.

SBP Sewer Pump Station

1. Install SCADA system using LTE radios as a means of communications. There will be annual licensing fees for this service moving forward.
2. \$75,000 plus 20% for engineering, plus 10% contingency. **\$99,000**

Sewer pumping stations are partial rebuilding as opposed to total rebuilding. Estimate only based on site visits with Simsbury sewer department.

Route 10 pumping station

- Animal Shelter

- \$150,000 to replace control panel, material and labor, install Scada system, install 2-way LTE radio with antenna for communication.
- \$200,000 for 2/20 HP new pumps and rails with labor.
- \$30,000 valve replacement and labor
- Electrician and Eversource associated costs. \$10,000
- \$25% engineering
- 12X12 Concrete building with 4' door, vents on the side, \$80,000
- \$15% contingency total project.

Total 680,000 vs. \$2.6 M

Route 189 pump station

- Next to PW facility

- \$150,000 to replace control panel, material and labor, install Scada system, install 2-way LTE radio with antenna for communication.
- \$120,000 for 2/15 HP new pumps and rails with labor.
- \$30,000 valve replacement and labor
- Generator, \$20,000
- Electrician and Eversource associated costs. \$10,000
- \$25% engineering
- 12X12 Concrete building with either a garage door opening or (2) 36' side by side doors, vents on the side. \$80,000
- \$15% contingency total project.

Total \$600,000 vs. \$1.8 M

Wastewater Pump Station Replacement Costs Granby, CT

To: Kirk Severance, Director of Public Works, Granby Public Works
From: Alan Wells, Tighe & Bond
David Popielarczyk, Tighe & Bond
Miles Moffatt, Tighe & Bond
CC: Adam Yanulis, Tighe & Bond
DATE: September 19, 2025

In accordance with the Town of Granby's (the Town's) request, we are providing budgetary capital costs for the replacement of the Town's Salmon Brook Street and North Granby Road Wastewater Pump Stations.

The Salmon Brook Street Pump Station is located near the animal shelter at 166 Salmon Brook Street and is the largest wastewater pump station in Granby's sewer system. This pump station serves the sewer customers north of the pump station.

The North Granby Road Pump Station is located on North Granby Road at Kendall Brook, near the road to Granby's high school and middle school. This pump station currently serves the Granby Memorial High School, the Granby Memorial Middle School, and the Department of Public Works (DPW) facility. In the future, this pump station may also serve neighborhoods to the northeast of the pump station.

A wastewater evaluation was completed in 2024 that provides information on current and projected future wastewater flows to these pump stations, which was used to estimate capacities for the new pumping facilities. This evaluation is documented in the technical memorandum titled *Wastewater Flow Study*, prepared by Tighe & Bond and dated January 24, 2024.

1 Assumptions

In order to develop budgetary costs for the replacement of the pump stations noted above, we assumed the following:

1. The pump stations will be sized to accommodate the future peak flows predicted in the 2024 wastewater evaluation noted above.
2. The pump rates will be sufficient to comply with the force main velocity requirements described in *TR-16, Guides for the Design of Wastewater Treatment Works*, 2011 edition, as revised in 2016, prepared by the New England Interstate Water Pollution Control Commission (TR-16). This document is often used as a guide for sewer planning, design and construction in Connecticut. TR-16 recommends that a minimum flow velocity of 3 feet per second (fps) at the average pump rate be attained in order to re-suspend solids deposited in the force main between pumping cycles. We assumed that the existing North Granby Road Pump Station force main would continue to be used (i.e., would not be replaced with a different size force main).
3. The pumping facilities will be submersible type.

4. Each pumping facility will be provided with a concrete wetwell and a concrete valve vault.
5. Each pumping facility will be equipped with a standby generator.
6. Each pumping facility will have a building in which the generator and pump controls will be located.
7. The new pump station will be located near to the existing pump station, minimizing the amount of new site piping required.
8. A chain-link fence will be installed around the perimeter of the pump station sites.
9. Special construction features to provide flood protection will not be necessary.
10. Rock excavation will not be necessary.
11. Minimal hazardous building materials that require demolition will be encountered.

2 Costs

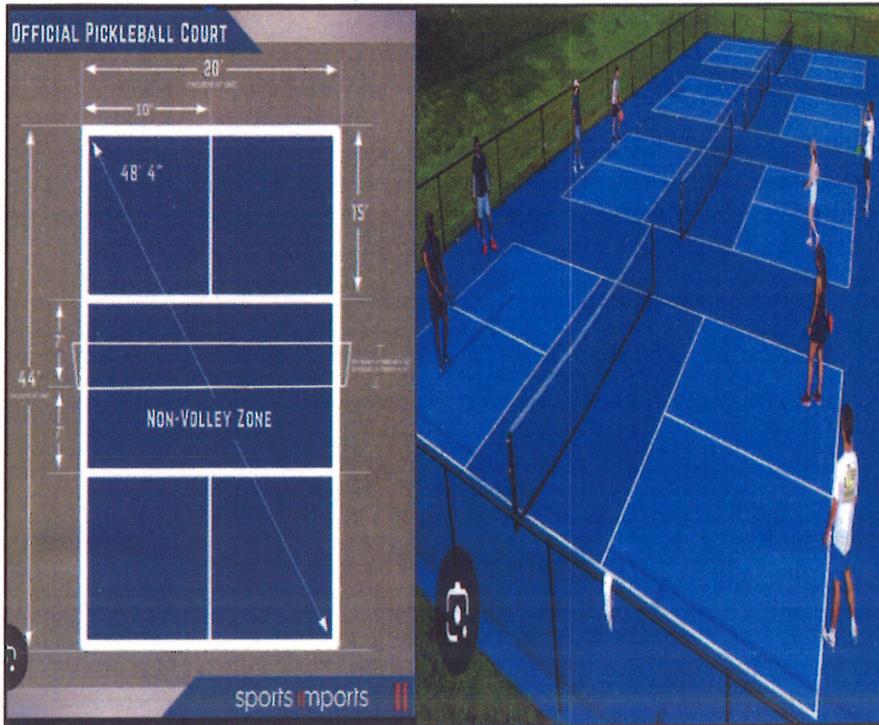
The estimated budgetary costs presented in this memorandum are based on recent construction bid prices from other communities for new pumping facilities that have similar characteristics to those listed in the above assumptions. These costs are for planning purposes and are not based on a detailed review of the needs and requirements at each pumping facility. If the Town decides to proceed with the replacement of these pump stations, we recommend that a more detailed cost estimate be developed that is based on the design of pump station improvements.

A breakdown of the Engineer's Opinion of Probable Capital Cost (OPCC) for the replacement of the Salmon Brook Street and North Granby Road Pump Stations is presented in Table 1.

TABLE 1Engineer's Planning Level Opinion of Probable Capital Cost¹

Item	Salmon Brook St. PS	North Granby Rd. PS
Future Pump Station Capacity (gpm)	720	270
Costs		
New pump station ²	\$1,500,000	\$1,000,000
Demolition of existing pump station ³	\$70,000	\$50,000
Site work ⁴	\$150,000	\$100,000
Total Construction Cost	\$1,720,000	\$1,150,000
Contingency (25%) ⁵	\$430,000	\$288,000
Total Construction Cost w/Contingency	\$2,150,000	\$1,438,000
Engineering Allowance (20%) ⁶	\$430,000	\$288,000
Total Capital Cost	\$2,580,000	\$1,726,000
Say	\$2,600,000	\$1,800,000

¹Tighe & Bond has no control over the cost or availability of labor, equipment, or materials, over market conditions, or over the Contractor's method of pricing. The estimates of probable capital costs are made on the basis of Tighe & Bond's professional judgment and experience. Tighe & Bond makes no guarantee nor warranty, expressed or implied, that the bids or the negotiated construction cost of the work will not vary from this estimate of the probable capital costs. Costs are based on a September 2025 Engineering News Record Construction Cost Index of 13928.


²This item includes all materials, labor, and equipment required to provide a new wastewater pump station (except those items listed specifically below it), including the concrete wet well and valve vault, a generator, a generator/control building, pumps, piping, portable hoist, pump controls, the necessary electrical components, building HVAC, etc.

³Includes the estimated cost to remove and dispose of the existing pump station components, as needed to install the new pump station.

⁴Includes the estimated cost of new site piping, manholes, bypass pumping, dewatering, perimeter fence, bollards, surface restoration, and all other site work not included in the pump station cost.

⁵Includes a 25% construction contingency.

⁶The engineering allowance is for design, permitting, bidding, and construction phase services.

The image shows a diagram of an official pickleball court on the left and a photograph of a real pickleball court on the right. The diagram is titled 'OFFICIAL PICKLEBALL COURT' and includes dimensions: 20' (width of net), 10' (width of end lines), 48' 4" (length of the court), 15' (width of the end lines), 44' (length of the baseline), and 7' (width of the non-volley zone). The word 'NON-VOLLEY ZONE' is printed on the court. The photograph shows a blue pickleball court with a net, surrounded by a black fence. Several people are playing on the court. The 'sports imports' logo is visible at the bottom of the diagram.

Component	Estimated Cost Range
Site Preparation (grading, drainage)	\$3,000 – \$15,000
Base Foundation (concrete or asphalt pad)	\$9,000 – \$18,000
Surfacing / Painting (acrylic surface)	\$4,400 – \$13,200
Lighting Installation (LED system)	\$5,000 – \$20,000
Fencing and Barriers	\$2,000 – \$10,000
Net System and Posts	\$300 – \$1,500
Accessories (benches, windscreens, etc.)	\$1,000 – \$5,000+